Welcome to AOMAG MAGNETICS

  |   +86(0)591 8639 7993
Tiktok

Practical Circuit

How to use AOMAG Magnetics products to build simple and practical circuits, only a few devices can be realized, without the need for additional driver chip, is the product of cost reduction and electronic DIY production of a better choice of solutions. Let's take a look together! If you want to build other more complex circuits or DIY fabrication, the devices required may be larger and need to be comprehensively evaluated, please feel free to contact AOMAG Magnetics for advice.

Because it takes energy to force electrons to flow against the opposition of a resistance, there will be voltage manifested (or "dropped") between any points in a circuit with resistance between them. It is important to note that although the amount of current (the quantity of electrons moving past a given point every second) is uniform in a simple circuit, the amount of voltage (potential energy per unit charge) between different sets of points in a single circuit may vary considerably:

Uniform Current in a Circuit

Take this circuit as an example. If we label four points in this circuit with the numbers 1, 2, 3, and 4, we will find that the amount of current conducted through the wire between points 1 and 2 is exactly the same as the amount of current conducted through the lamp (between points 2 and 3). This same quantity of current passes through the wire between points 3 and 4, and through the battery (between points 1 and 4).

However, we will find the voltage appearing between any two of these points to be directly proportional to the resistance within the conductive path between those two points, given that the amount of current along any part of the circuit's path is the same (which, for this simple circuit, it is). In a normal lamp circuit, the resistance of a lamp will be much greater than the resistance of the connecting wires, so we should expect to see a substantial amount of voltage between points 2 and 3, with very little between points 1 and 2, or between 3 and 4. The voltage between points 1 and 4, of course, will be the full amount of "force" offered by the battery, which will be only slightly greater than the voltage across the lamp (between points 2 and 3).

This, again, is analogous to the water reservoir system:

Circuit Reservoir Analogy

Between points 2 and 3, where the falling water is releasing energy at the water-wheel, there is a difference of pressure between the two points, reflecting the opposition to the flow of water through the water-wheel. From point 1 to point 2, or from point 3 to point 4, where water is flowing freely through reservoirs with little opposition, there is little or no difference of pressure (no potential energy). However, the rate of water flow in this continuous system is the same everywhere (assuming the water levels in both pond and reservoir are unchanging): through the pump, through the water-wheel, and through all the pipes. So it is with simple electric circuits: the rate of electron flow is the same at every point in the circuit, although voltages may differ between different sets of points.

If you want to build other more complex circuits or DIY fabrication, the devices required may be larger and need to be comprehensively evaluated, please feel free to contact AOMAG Magnetics for advice.


Lessons In Electric Circuits copyright (C) 2000-2002 Tony R. Kuphaldt, under the terms and conditions of the Design Science License.

 

Company: Fuzhou AOMAG Magnetics Co.,Ltd.
Add: Jinshan Industrial Zone, Cangshan, Fuzhou, P.R,China
Tel: 86-0591-86397993    Fax: 86-0591-86399173
Mail:     Skype: Danielle.omagnet
AOMAG Magnetics is a professional manufacturer and exporter of permanent magnet (NdFeB, Alnico, Smco & Ferrite) and Magnetic Assemblies in China since 1996. AOMAG Magnetics, the leading magnet brand in China. Our annual production capacity is 8000 tons. We own a complete production chain and perfect quality assurance system. We are an IATF 16949:2016, ISO 14001:2015 & ISO 45001:2018 certified company. 
Tiktok
Copyright © 2025 AOMAG Magnetics All Rights Reserved. Site Map| Site Map XML| Terms of Service| Privacy Policy